A Large Scale Analysis of Mountain Glacier
Shrinkage Using Convolutional Neural Networks

Matthew Waismann, Somansh Budhwar, and Armin Schwartzman

Abstract—Mountain glaciers are undergoing widespread
shrinkage, with consequences for fresh water supplies and
contributions to sea level rise. While large inventories of glacier
surface areas exist, these datasets are temporally sparse, and
traditional methods of collecting glacier data, such as ground-
based measurements or manual analysis of satellite imagery,
are not scalable for continuous global monitoring. With recent
advancements in computer vision techniques and the growing
availability of remote sensing data, it is now feasible to pro-
grammatically analyze the extensive archives of satellite images
from missions such as Landsat. In this work, we develop a
scalable, programmatic framework for globally estimating the
area of mountain glaciers from satellite images over time. After
applying our novel data pre-processing and filtering methods,
the main engine is a U-net deep Convolutional Neural Network
(CNN) with a modified Resnet encoder. The CNN is trained on
7174 glacier contours and their corresponding images, each at
only one time point, and then applied to time series of satellite
images of 1083 glaciers, comprising a total of 505835 images,
to obtain time series of estimated surface area for those glaciers
over the 40-year period 1984-2023. Our global analysis confirms a
consistent trend of glacial surface area shrinkage in all five major
glacierized regions: Asia, the Caucasus, Europe, North America
and South America. We estimate an overall glacier surface area
decline of 0.2% + 0.01% per year.

Index Terms—Remote sensing, Landsat, digital elevation mod-
els, image segmentation.

I. INTRODUCTION

OUNTAIN glaciers play a crucial role in the

cryosphere, providing fresh drinking water to a signif-
icant portion of the global population, particularly in regions
near the Himalayas, Andes, Rockies, Alps and Karakoram
mountain ranges [8]. However, glaciers around the world
are shrinking and the consequences extend beyond the local
environments and populations. Glacier shrinkage is a major
contributor to sea level rise, with studies estimating that
18-24% of the global increase is attributable to glacier mass
loss. These doing so largely as a result of anthropogenic
climate change. Between 1991 and 2010, 45-93% of global
glacier mass loss has been attributed to human activity [7].
Furthermore[5].

Historical efforts to globally quantify glacier mass have
faced significant challenges. Glacier inventories such as the
Randolph Glacier Inventory (RGI) and the World Glacier
Inventory (WGI) are good starting points, providing valuable,
unified datasets that include point-in-time glacier surface area
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measurements and glacier outlines [1]. However, these datasets
are temporally sparse, glacier outlines are prone to human
annotator error, and the quality of these annotations vary
significantly. In addition, traditional ground-based or manual
methods for collecting glacier measurements are not scalable
for continuous global monitoring. As a result, comprehensive
global analyses of glacier decline remain limited [6].

With recent advancements in computer vision techniques,
including Convolutional Neural Networks (CNNs), and the
growing availability of distributed computing resources, it
is now feasible to programmatically analyze the extensive
archives of remote sensing data from missions such as Landsat.
In this paper, we leverage these technologies to analyze
(be more specific, detailed, action words, about what we’ve
developed (e.g. code, data, ML architecture) and why its
novel) glacier surface area changes at scale, producing high-
resolution temporal estimates of glacier extent worldwide.

Our global analysis reveals a consistent trend of glacial
surface area decline across all five major glacierized regions:
Asia, the Caucasus, Europe, North America and South Amer-
ica. We estimate an overall glacier surface area decline of
0.2% £ 0.01% per year.

II. DATA DESCRIPTION
A. Overview

In order to effectively train a machine learning model
for the task of glacier segmentation and make meaningful
inferences on glaciers, across the array of available satellite
and other remote sensing data sources, time points, and
worldwide locations, we built an extensive and highly curated
data product across various data sources. We leveraged the
Global Land Ice Measurements from Space (GLIMS) database
for identifying glaciers and obtaining human-annotated glacier
outlines, United States Geological Survey (USGS) Landsat
satellite image data and metadata vended through Google
Earth Engine for glacier imagery with high spatiotemporal
resolution, NASA-provided digital elevation models (DEMs)
from the Shuttle Radar Topography Mission (SRTM) and our
own custom-derived image features. These datasets were used
to support exploratory data analysis, machine learning model
training, inference, and our analysis and impact

B. GLIMS Database

The GLIMS database provides a comprehensive list of
glacier outlines for over 328,115 glaciers worldwide. GLIMS
has been a collaborative effort that has involved more than
60 institutions since its establishment in 1999 (glims.org).
In particular, the Randolph Glacier Inventory (RGI) project,



Fig. 1: Five sample glacier outlines from GlobGlacier

Fig. 2: Five sample glacier outlines from the Randolph Glacier
Inventory

which represents 173,023 glaciers in GLIMS, has made a
significant contribution. However, RGI prioritized achieving
complete coverage over extensive documentary detail during
its 1-2 year completion period (RGI paper citation). Other
well-funded projects, like GlobGlacier, supported by the Eu-
ropean Space Agency, have curated a carefully selected set of
glacier outlines.

To ensure the highest-quality outlines for training our
segmentation model, we filtered the GLIMS dataset down
to 18,093 glaciers. Firstly, we selected outlines drawn after
2005 without a specific reason for this choice. Furthermore,
we excluded glaciers from the Arctic and Antarctic GLIMS
regions, such as Svalbard and the Antarctic Peninsula. This
filtering process resulted in a dataset primarily comprising
outlines from the Himalayas, European Alps, Western North
America, the Andes, and the Tien Shan — Pamir — North
Karakora mountain complex. GLIMS also provides surface
area estimates for these glaciers, allowing us to systematically
sample regions with a bias towards larger glaciers. Specifically,
we selected glaciers with a surface area between 1 km? and 50
km?. While the majority of outlines were for smaller glaciers,
opting for larger glaciers provides two strategic advantages:
(1) Larger glaciers are associated with larger satellite images,
facilitating easier shape capture by the segmentation model,
given the fixed size of the satellite images, and (2) The model
should be well-acquainted with the largest glaciers, as they
have the highest impact. Although many glaciers are larger

Distribution of Glacier Surface Area (km?)

150000

125000

100000

75000

Frequency

50000

17.0% of glaciers have 1 square

25000 km or more surface area

0

I
0.0 0.5 10 1.5 20 2.5 30
Glacier Surface Area (km?)

Fig. 3: Distribution of Glacier Surface Area in GLIMS

than 50 km?, we set it as an upper bound to filter out outliers
and potential human annotation errors.

C. Google Earth Engine: Images

To create the ground truth masks for our training data set, we
defined bounding rectangles for each glacier outline, adding
an additional 10% of spatial extent along each of the two
dimensions. These bounding rectangles also defined the spatial
extent of our training data inputs. Using the Google Earth En-
gine Python API, we exported images for the 18,093 glaciers
from Google Earth Engine using the GLIMS-derived bounding
rectangles. To allow for more sophisticated preprocessing of
our training data images, we retrieved all Landsat 5, 7 and
8 images captured within an even 100-day window of the
GLIMS attribute SRC_DATE, defined as the as-of date for
the outline, usually the acquisition date of the source image.
The specific Google Earth Engine image collections used were
LANDSAT/LT05/C02/T1_L2, LANDSAT/LE07/C02/T1_L2,
and LANDSAT/LCO08/C02/T1_L2, representing Landsat im-
age collection 2, Level-2, Tier 1 data. Landsat collection 2 is
the second major reprocessing effort on the Landsat archive
by the United States Geological Survey (USGS) and as of
December 30th, 2022, its predecessor, Landsat collection 1,
is no longer available for download from the USGS. Level-
2 data represent an additional layer of processing on top of
Level-1 scaled Digital Number data, providing atmospherically
corrected, unitless, surface reflectance data which is more
appropriate for time series analysis [might need to find a
source]. Of the Level-2 data, Tier 1 scenes represent the high-
est quality of data and are considered suitable for time series
analysis [USGS]. Since these data are Tier 1 and represent
various time points with various Landsat satellite overlap and
availability, the amount of Landsat images collected for in this
100-day window varies for each bounding rectangle. INSERT
A HISTOGRAM or SUMMARY STATISTICS HERE SHOW-
ING THE DIFFERENT NUMBER OF IMAGES WE HAVE).
Additionally, we obtained Digital Elevation Models (DEMs)
for each bounding rectangle through Google Earth Engine’s



Fig. 4: Training dataset size

API, utilizing NASADEM, a NASA data product for global
elevation modeling.

D. Image Metadata

In addition to the images themselves, USGS and Google
Earth Engine provide a rich set of metadata which we ex-
tensively processed to facilitate further post-processing and
filtering. This metadata included fields such as cloud cover
over the image and land portions, and image quality scores (1-
9). The new Landsat Collection 2 data also provided land char-
acterization bits that offer metadata on snow/ice confidence.
The satellite images and DEMs were saved as GeoTIFF files,
a format supporting georeferencing information embedded in
raster images.

III. DATA PRE-PROCESSING

Before training, the data underwent extensive preprocessing.
As the spectral bands differ slightly across the Landsat satel-
lites, the selected bands have similar wavelength ranges but are
not an exact match. Since we had access to all satellite images
captured within a 100-day window around the annotated
polygon date, we averaged the images across time using an
arithmetic mean. This approach helped smooth out shadows,
debris, and defects. To ensure compatibility with TensorFlow,
we reshaped the images and masks to 128 x 128 pixels and
normalized the pixel values to the unit interval. Additionally,
we computed the Normalized Difference Snow Index (NDSI)
and Normalized Difference Water Index (NDWI) from the
existing bands, following their universal formulation. As a
result, the training set comprised 128 x 128 masks and in,,
128 x 128 images with seven spectral bands, a DEM band,
and NDSI & NDWI bands. We read the GeoTIFF rasters
and polygon shapefiles into the Python runtime environment
using the rasterio library. Since the rasters were defined in the
UTM reference system while the polygons were defined in
the WGS 84 reference system, we reprojected each raster to
the WGS 84 reference system using rasterio. With matching
reference systems, we obtained ground-truth masks by aligning
the satellite images and polygon masks using rasterio. These
raster images, comprising seven spectral bands, DEMs, and
ground-truth masks, constitute the training set for the CNNS.

A. Data Pre-processing for the model

jOUTDATEDy, Firstly, the dataset consisted of masks that
were missing segmentation, so they had to be filtered out.
We calculate the variance of each mask, and if variance was
near zero, we discarded that mask and the corresponding band
images of that GLIMS id. Consequently, the training corpus
comprised a total of around 17,795 images and corresponding
masks.

Secondly, the seventh band of Landsat-7 images were
found to be corrupted, which might degrade the learning and
predictive capabilities of the convolutional neural network
(CNN). But since they might offer partial information about
the segmentation, they were kept in the training data.

Finally, each band was normalised using min-max normal-
isation such that each pixel in a band has value ranging from
0 to 1. This helps during the training phase of the model.
The 17,795 images were further partitioned into a training set
(16015 images), and the test set (1780 images). jOUTDATED;;,

B. Inference Data Selection

The selection for inference is determined by following SQL
query identify_inference_glims_ids_geog_area_rollup_50.sql
which runs over our AWS Athena metadata database. This
query works by scanning over all of our training data metadata
for GLIMS IDs that have at least one file with cloud_cover
< 10, image_quality = 9, more than 50,000 pixels, 0 no data
pixels, less than 10% zero pixels, and have geographic area
that’s not Canada (since those glaciers all appear on Ellesmere
Island and are too far north for DEMs), and has an image in a
low snow month (all of them do). Then we will take 50 GLIMS
IDs per our 5 geographic area rollups based on db_area. In
September 2024, we can an effort to expand the since of our
inference dataset. We took the existing query and extended it
to take 250 glaciers per of the 5 geographic area rollups. This
time, when downloading the images from the Earth Engine
API, we decided to push certain filters down to the server,
so we could limit the amount of glaciers we’re downloading
which would only later get filtered out in our metadata filtering
step.

C. Pre-inference Filtering

Before applying our U-Net for our semantic segmentation
task on our extracted satellite images, we have a metadata-
based filtering step where we only run inference for images
which meet our criteria for inference. This criteria is applied
via a SQL query (Github file link here) and the actual filtering
happens before the images read into local memory with
rasterio.

Filter criteria:

o cloud cover: less than 10% of the image

« summer months only: May-October in the northern hemi-

sphere and November-April in the southern hemisphere

« number of pixels > 50000

o we should break down the 1,000,000 ways this is a dumb

thing to do

¢ no data pixel count = 0

« percentage_zero_pixels | 0.1
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D. Metadata Collection

We persist the metadata provided by earth engine. Earth
engine provides these metadata via the Image object’s get-
Info() method. This call returns a JSON blob of metadata for
each of the individual images being downloaded (this is done
iteratively, at the same time as download time). At the same
time as we download these images, we persist these JSON
blobs in a list per GLIMS ID per Landsat satellite (tech debt -
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Fig. 7: Distribution of Landsat image metadata with the
following filters: at most 5% cloud cover, at most 10% zero-
value pixels, at least 50,000 total pixels (across all bands),
and 10 as the image quality score. The sub-panel x-axis is the
same as the title.

we could’ve been a lot cleaner with how we store this metadata
- the script which relationalizes these metadata has to navigate
a strange file structure)

Example folder structure of list of of JSON blobs:

o landsat/
o /G0O07068E45470N
o /GO07068E45470N_1984-04-18 L5 _C02_T1_L2_SR.tif

e /GO07068E45470N_2024-01-01_L8_C02_T1_L2_SR.tif
o /meta_data/

e /../metadata_list_I5

e /../metadata_list_I7

e /.../metadata_list_17
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Earth engine may sometimes provide more than one meta-
data record per image (having two different cloud cover values
for the same image is a common scenario that we see), so we
perform deduplication, choosing one of the records arbitrarily
to ensure we have one record per file name.

In addition to the metadata provided by Earth Engine, we
also generate our own metadata. As each image is downloaded
from earth engine, we collect logs for the purpose of moni-
toring the download process. Note, these metadata are really
only helpful for monitoring download progress because all
of the metadata fields provided here come directly from the
Earth Engine provided metadata.After every image has been
downloaded. We iterate over each downloaded file, collect
metadata about the file itself and open the image and collect
metadata about the image itself.

The time_series_metadata_handler.ipynb file processes (and
collects in the case of the image and file attributes) all of our
metadata into relational CSV files, where each record belongs
to a single file (file name primary key). These CSV files
are then uploaded to Amazon S3, registered in AWS Glue
as individual data tables for easy consumption with a tool
like AWS Athena.These files were uploaded to s3://full-time-
series-metadata-t1-12-sr and crawled over by the full-time-
series-metadata-t1-12-sr-crawler in us-west-1.

IV. IMAGE SEGMENTATION MODEL

Since this work aims to perform image segmentation, a U-
Net architecture was used. The U-Net architecture has been
shown to perform well in image segmentation tasks [10]. The
basic U-Net consists of two parts. First, an encoder condenses
the image into a latent representation of the input image.
Second, the decoder up-scales the latent representation to
recreate the segmented image. To help the segmentation task,
the corresponding layers from the encoder are also combined
with each up-scaled layer, which is referred to as adding “skip

connections” [9]. The overall architecture is shown in Fig. 9
and described in detail next.

A. Encoder

The encoder section is a modification of a model called
Resnet-50. Resnet-50 is a multi-layer image segementation
model pre-trained on a diverse image dataset with complex
shapes, patterns and features [4]. The advantage of using a
pre-trained model is that the weights are pre-trained to identify
low-level features commonly found in images such as edges
and corners. The pre-trained model thus constitutes a good
starting point for obtaining a good representation of images
of glaciers with less training time.

Two modifications were made to Resnet-50 according to our
situation. First, the original Resnet-50 model takes a 3-channel
input while our dataset has a 10-channel input. Therefore, we
replaced the first layer of Resnet-50 with a 10-channels input
custom layer with randomly initialized weights to be updated
during training. Second, since we need to use Resnet-50 as
an encoder and not as a classifier, its last two layers were
removed. The resulting modified Resnet-50 encodes the 10-
channel input, each of size 128 x 128, as a 2048-channel
output, each of size 4 x 4. The full encoder is depicted on
the left hand side of Figure 9 and can be described as follows.

The encoder takes in 10 channels as the input, each of size
128 x 128. It begins with a 2D Convolution layer with 64
filters. Each filter has a kernel size of 7 x 7 pixels, stride
of 2 x 2 pixels, and adds a padding of 3 pixels outside the
margins of each image. These dimensions are chosen such that
the dimensions of the output feature map from the first layer
align with the dimensions required by the upcoming Resnet
layer. The output is then batch normalized, passed through
a ReLU activation function and then Max Pooled. It is then
passed to the four major modules of Resnet-50 which are
shown in Fig 10. The first module consists of 3 sequential
sub-modules where each sub-module consists of 3 convolution
layers. Similarly, the following modules consist of 4, 6 and 3
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Fig. 10: ResNet-50 architecture used in the encoder part of the CNN architecture depicted in Figure 9. The four colors indicate
the match between the four ResNet modules depicted here and those in the encoder depicted in Figure 9.

sub-modules each. After processing, the encoder outputs 2048
channels of 4 x 4 images. These channels contain the latent
representation of the original satellite image bands.

B. Decoder

The decoder section (right half of Fig. 9) involves upsam-
pling the 2048 channel input we obtained from the modified
Resnet-50 into a 2-channel image of size 128 x 128. The
two channels represent the probability of a pixel belonging
to the class ’glacier’ or the class ’background’. Although
a single channel would suffice, having two channels makes
it technically easier to train the model using the standard
PyTorch library, which expects the number of output channels
to be equal to the number of classes being predicted. In one
output channel, each pixel contains the probability of it being
a glacier, and similarly in the other output channel, each pixel

contains the probability of it being the background. In this
work, one output channel is the complement of the other.

In the first step of upsampling, the decoder deconvolves
the 2048 channels to 1024 channels of size 8 x 8 and then
applies ReLU activation and batch normalization to it. In
the subsequent step, the decoder concatenates the upsampled
channels with the corresponding channels of the encoder as
shown in Fig. 9. This concatenation is called a skip connection,
and it helps provide the semantic information from the encoder
that may be lost during subsequent encoding. This is akin to
using the original image underneath a tracing paper to draw
accurate outlines. The concatenated layers are then passed
through a convolution layer to reduce the channel, and again
an activation function and batch normalization are applied.
Subsequently, we get the 2-channel output we desire.
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V. MODEL TRAINING
A. Loss function

Training of the model was implemented using cross-entropy
loss. While the objective is binary image segmentation, cross-
entropy loss is a softer loss function in the sense that it does
not simply penalize right or wrong pixel classification, but
penalizes more if there is a higher probability difference in
the classification. This score is appropriate for training with
blurred images, as in our case, where the distinction between
ice and ground could be unclear. Since most images exhibit
glacier pixels and background pixels in a similar proportion,
there was no severe class imbalance and other loss functions
such as focal loss were not necessary. The performance of the
final model was evaluated using the Dice score, which is more
easily interpretable as a measure of the segmentation accuracy
of the model.

B. Hyper-parameter tuning

To begin training, we must first find the appropriate hyper-
parameters for the model. To tune these hyper-parameters, a
subset of 4000 images were selected at random from the full
training set of 7174 glacier images (Figure 11). Of those 4000,
90% were used to train the model and the remaining 10% to
evaluate its performance.

Table I shows the cross-entropy loss for various combina-
tions of the learning rate and batch size. As can be seen in the
table, reducing the learning rate had an important impact on
performance but not so the batch size. Based on the smallest
cross-entropy score obtained, the learning rate was set to
0.00001 and the batch size to 32.

As additional checks on hyper-parameters, we found that
a slightly higher Dice score was obtained by unfreezing the
Resnet encoder weights, as opposed to freezing the original
pre-trained weights, and keeping the output classification
threshold to the default of 0.5.

Learning | Batch | Cross-entropy
rate size loss
0.001 16 3.35
0.0001 16 0.68
0.00001 16 0.50
0.00001 8 0.98
0.00001 8 0.53
0.00001 32 0.49

TABLE I: Hyper-parameter tuning: Loss for each hyper-
parameter combination on the same data.

C. Data Augmentation

To improve model training, the training dataset was aug-
mented by adding different transformations to each image in
the training phase. Each image had one of three transforma-
tions randomly applied to them: vertical flip, horizontal flip
and spatial blur. That is, each input image and its corre-
sponding target image were either flipped vertically, flipped
horizontally, or spatially blurred with a Gaussian kernel.
Augmenting the training data by these transformed images
allows the model fitting to adapt more generally to glaciers of
different spatial orientations and images of less quality.

While all three transformations could be applied to each
image, this would quadruple the training set, substantially in-
creasing computational training time. Instead, for each image,
each of the transformations was applied with a probability
of 0.5. This means a probability of 0.125 of no transforma-
tion being applied, 0.375 probability of one transformation
being applied, 0.375 probability of two transformations being
applied, and 0.125 probability of all three transformations
being applied. This process thus increased the training set size
by only 75%, while still being richer in the desired manner.
The spatial blur consisted of convolution with a 3 x 3 pixel
Gaussian kernel with standard deviation 0.8, which is the
default in the TensorFow function tf.gaussian_filter2d.

D. Training procedure

To perform the training of the model, the full training set of
7174 glacier images was randomly split into three subsets of
sizes 90%/10%/10% of the total (Figure 12). The larger subset
of 6456 images was augmented according to the procedure
described above resulting in a proper training set of 11298
images.

Following the hyper-parameter tuning results, the training
was carried out using a learning rate at 0.00001 with Adam
optimizer and batch size of 32, with unfrozen encoder weights.
The 10% evaluation set was used to track the training. The
final trained model was chosen as the model that minimized
the cross-entropy loss on the evaluation set during the training
procedure.

VI. INFERENCE
*#*% This paragraph belongs in Data Description We per-
formed inference on time series of satellite images for 505835
images for 1083 glaciers. Each time series for each glacier
has a different number and distribution of time points. Some
glaciers have more than 1000 images while others have less
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than 500. The distribution of number of images per glacier in
the inference set is shown in Figure 13(left). The observations
are not equally spaced over time, with sparser data during the
1990s and more data available at later times. The number of
glaciers with available images per year for inference is shown
in Figure 13(right). Note that these images are filtered using
criteria *** (Put filters in table after verifying with Matt) such
as low cloud cover, high image quality, low zero pixel count,
etc. (Verify with Matt the exact filters we used.) *** check
this

A. Inference procedure

The inference process is shown in Fig. 14. For each glacier,
we sort the available images according to their time stamps.
Then, resize each image using Pytorch’s resize function which
interpolates the image to 128 x 128 pixels because the CNN
requires the images to be of these dimensions. Next, we
apply pixelwise Gaussian smoothing over time to reduce noise.
This is implemented as a pixelwise time Gaussian filter with
standard deviation equal to 20 time points. After smoothing,
we input the image to the CNN and segment the glacier. Next,
each image is resized to its original size.

As shown in Figure 9 and described above, the output
of the CNN decoder at each pixel is a number between O
and 1, interpreted as a probability of that pixel belonging to
the glacier. Figure 15 shows an example of the soft mask
segmentation obtained by the CNN. The soft segmentation is
turned into a hard segmentation by thresholding the output at
0.5, so the segmented image consists of pixels that are either
a background pixel (0-0.5) or a glacier pixel (0.5-1). The area
of the glacier in pixels at any given time point is obtained
by simply adding the values of the thresholded binary image.
Since the resolution of Landsat images is 30 meters by 30

meters, each pixel measures 900 meters squared. Thus the
true area of the glacier in kilometers squared is obtained by
multiplying the pixel area by 900/(10°).

VII. RESULTS
A. Model evaluation metric

For this model, we chose to use Sgrensen—Dice coefficient,
also known as Dice score [3], as an evaluation metric. The
reason we choose this metric is two-fold. Firstly, the Dice loss
results in marginally better models compared to the Jaccard
loss in image segmentation tasks [2]. Secondly, the Jaccard
index has the union of sets as the denominator, while the Dice
score has the sum of sets as the denominator, which does not
change during training, thus providing a simpler loss function
during training.

B. Example output: Trient glacier

For the Trient glacier, we obtain 464 images at various time
points from 1984-04-18 to 2023-10-07. These images were
obtained from Landsat-5 and Landsat-7 images by applying
the following filters. Cloud cover should be less than 20,
Percentage of zero pixels in the image should be less than
15%, Image quality should be greater than or equal to 9
(out of 10), no data pixels (NaN values) should be zero, and
number of pixels in the image should be greater than 50,000.
Next, we extract the following bands from each satellite image,
’blue’,’ green’,’red’, nir’,’swir’,’thermal’. Then we resize each
image to 128x128 pixel because this is the size our model was
trained to process. Note that we save the original size of the
image for resizing the output for area prediction, and since
original image size varies marginally between Landsat-5 and
Landsat-7, we only choose one size. Since the images are still
prone to errors, and missing information, we apply Gaussian
Smoothing with Sigma 20 to the series of 464 images. In other
words, each pixel is smoothed normally based on neighbouring
pixels at different time points. Finally, we calculate the NDSI
and NDWI of each of the smoothed image to create our
inference dataset.

Each image in the inference dataset is then passed through
the model to get the segmented image. Each segmented image
is then resized to the original size. Finally, to calculate the area
we simply sum all the pixel values in the image and multiply
it with 900/(10°) since each pixel is 30x30 meters. So we get
the area of the glacier in kilometers squared.

As a case example we show results for the Trient glacier
in Switzerland (GO07026E45991N). The available data corre-
sponding to the Trient glacier consists of 464 images at various
time points from 1984-04-18 to 2023-10-07. The estimated
area using our trained CNN is plotted over time in Fig. 16.

As seen in the graph, the total area of the Trient glacier
shows an overall decline over the last four decades. However,
the decline is not uniform over time, with most of the
decline occurring in the periods 1985-1988 and 2002-2015.
The glacier appears to have been stable over the last ten years.
To better understand this behavior spatially, Fig. 17 shows
satellite images of Trient in 1995 and 2005, overlaid with the
soft segmentation output from the trained CNN. The results
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show that the algorithm is not only able to capture the northern
terminus of the glacier despite the lack of illumination. The
time comparison shows that it is precisely near the north
terminus where the ice is being lost.
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Region Relative Standard Relative
area change error std. error

Europe -0.00256 0.00019 0.075

Caucasus -0.00167 0.00025 0.149

Asia -0.00163 0.00015 0.090

North America -0.00155 0.00017 0.110

South America -0.00256 0.00029 0.115

H Total [ -0.00199 [ 0.00010 [ 0.049 ”

TABLE II: Summary of analysis results by region. Left
column: Estimated relative area change, fitted by log-linear
regression. Middle column: Standard error on the relative area
change, estimated from the regression. Right column: Relative
standard error (middle column divided by left column).

C. Results by region

The estimated area of all glaciers analyzed in this study is
plotted in the left column of Figure 18, grouped by five major
geographical regions: Asia, Caucasus, Europe, North America,
and South America. The graphs show the estimated time series
over the period 1985-2023. Notice that the data is sparser in
earlier years, especially before 1990, due to lack of Landsat
images during that early period.

Since glaciers are of different sizes and rates of change,
averages using absolute values in km squared would be
dominated by the largest glaciers. Instead, to make results
comparable between glaciers, we estimate the relative change.
This is done in two different ways via linear regression, as
follows.

The first method fits a log-linear regression model (see
Appendix ??) to the time series corresponding to each glacier,
resulting in an estimated relative change over the entire
period 1985-2023 for each glacier. These results are shown
as histograms in the right column of Figure 18. For all five
geographical regions, the majority (about 2/3) of glaciers
exhibit a relative reduction in area, although some glaciers
exhibit a relative increase in area.

The average of the relative changes is a weighted average,
where the value for each glacier is weighted by the number
of valid observations associated with it: glaciers with more
observations are given higher weight. A 95% confidence
interval is shown for the average within each region. The
weighted averages for all five regions are negative, indicating
glacier shrinkage, and are statistically significant, as their
associated confidence intervals do not cover the value 0.

The second method computes the geometric average of all
glaciers within a region pointwise at each time stamp, shown
in the left column of Figure 18 with a solid black line. The
geometric average is a log-linear average, analogous to log-
linear regression. Then, a log-linear regression (see Appendix
??) is fitted to the geometric average time series. The slope
of that line is the relative change shown in the right column
of Figure 18 in red.

VIII. CONCLUSION

In this paper we created a dataset of 10,443 glaciers and
trained a UNet convolutional neural network to segment the
glacier in the image. We achieved a Dice score of 0.92 on
the test set. Using the model we applied it to segment certain

glaciers and using the segmented image we estimated the area
of the glacier. Based on the the inference of Trient glacier
we note that its area is declining, especially at the tail of the
glacier, and there was a noticeable drop in the area after the
year 2000.

So, image segmentation offers a great way to estimate the
area of the glaciers on a global level. However, as we have
seen in this paper, the model and the predictions are only as
good as the data. The scan line corrector failure errors, cloud
cover, image quality and other factors affected the training
of the model and the inference. With a better resolution and
clearer data a better performance can be expected. Moreover,
with the advent of Attention mechanisms, a UNet architecture
with Attention gates can also be explored.

APPENDIX A
LOG-LINEAR REGRESSION FOR ESTIMATING RELATIVE
CHANGE

A. Log-linear regression for a single glacier

Let (t1,41), - - -, (tn, yn) be a time series of n measurements
Y1,--.,Yn, in this case surface area estimates, at time points
t1,...,t,. Note that the time points do not need to be equally
spaced. The proposed log-linear model poses the relationship

log(yi) = Bo+ Piti + e, i=1,...,n. (1)

Assuming that the measurement errors are independent be-
tween time points and have the same variance, this model can
be fitted by ordinary least squares, yielding the fitted equation

log(9i) = Bo + Biti,  i=1,...,n. )

Then the ratio between two measurements y; and y; at any
two time points ¢; and ¢; is given by
i . R ~
377 = exp (log(g;) — log(4:)) = exp [ﬂl(tj - ti)} :
(2
If the coefficient Bl is small in absolute value, as it is in our
case, then a first-order Taylor approximation of the exponential
gives that the relative change is approximately
Yi — i Y A
N :T—I%ﬁlt_t.
Yi Yi (i =1)
Therefore, the coefficient Bl represents the relative change in
the measurement per unit of time. For example, a value of
B1 = —0.02 represents a relative reduction in surface area of
2% per year.

B. Log-linear regression for regional averages

The regional surface area averages shown in black in the
left column of Figure 18 are modeled similarly to the log-
linear model (1), except that the measurement errors cannot be
assumed to be homoscedastic because the average at each time
point is computed from a different number of observations.
Assuming the measurement errors from different glaciers to
be independent, the average at each time point has a variance
that is inversely proportional to the number of glaciers. The
regression is fitted in the log domain similar to the description
in Section A-A except that the average at each time point is
weighted by the number of observations that constitute that
average.
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